

# **IRM Fonctionnelle**

#### Pr Denis Ducreux

#### Neuroradiologie, CHU Bicetre CNRS IR4M (UMR 8081), Université Paris 11







#### 1. Rappels Techniques

#### 2. IRM de Diffusion

- 2.1 Principes
- 2.2 Applications Cliniques Cérébrales
- 2.3 IRM de Tenseur de Diffusion
  - 2.3.1 Principes
  - 2.3.2 Anatomie Cérébrale Normale
  - 2.3.3 Applications Cliniques Cérébrales
  - 2.3.4 Anatomie Médullaire Normale
  - 2.3.5 Applications Cliniques Médullaires

#### 3. IRM de Perfusion

- 3.1 Rappels Physiologiques
- 3.2 Rappels Méthodologiques Perfusion en Bolus
- 3.3 Rappels Méthodologiques Perfusion ASL
- 3.4 Applications Cliniques

#### 4. IRM de Perméabilité

- 4.1 Principes
- 4.2 Enjeux

#### 5. Spectro IRM

#### 6. IRM d'Activation

- 6.1 Rappels Physiologiques
- 6.2 Rappels Méthodologiques
- 6.3 Applications Cliniques

#### 7. Bilan Fonctionnel

- 7.1 Status Epilepticus
- 7.2 Syncinésies du Kallmann de Morsier
- 7.3 Syringomyélie
- 7.4 Régénération axonale et Greffe de Moelle
- 7.5 Bilan Pré-Radiothérapie
- 7.6 IRM Fonctionnelle Olfactive
- 8. Conclusions

### 1. Rappels Techniques







D'après JM Franconi et F Giboreau. « Bases physiques de l'IRM »











### **Transformée de Fourier**







# 2. IRM de Diffusion

# 2.1 Principes



### Mesure de la Diffusion en IRM

Marquage spatial des spins tel que tout mouvement d'eau pendant temps t => perte de signal



### Séquence de Diffusion

- Séquence de diffusion (SE) décrites en 1986 [1] : (durée H 20') avec mouvements macroscopiques >> microscopiques
- *Echo-planar* (1 image < 100 ms) gèle les mouvements macroscopiques
- Gradients : H 20 mT/m, vitesse de commutation rapide
- Correction des gradients de Foucault
- Artefacts de susceptibilité magnétique
- Distorsion
- Résolution spatiale limitée (128x128)

#### [1] Le Bihan. Radiology 1986

### **Bases Physiques**



 $b = \gamma^2 \delta^2 G^2 \left( \Delta - \delta / 3 \right)$ 

#### Imagerie Echo Planar



#### Séquence de Diffusion

•Chute du signal est directement liée au mouvement des molécules d'eau.

Région à diffusion élevée (LCR) hyposignal
Région à diffusion basse (ischémie) hypersignal

•Mesure du coefficient de diffusion (ADC) selon :



où b dépend de durée et puissance des gradients de diffusion selon :

$$b = \gamma^2 \mathbf{G}^2 \delta^2 (\Delta - \delta/3)$$



### **Coefficient Apparent de Diffusion**



SA  $\approx e^{-b.ADC} = e^{-\gamma^2 G^2 \delta^2 (\Delta - \delta/3) ADC}$ 

### Séquence de Diffusion



T2:  $b=0 \text{ s/mm}^2$  DWI:  $b=1000 \text{ s/mm}^2$  DWI:  $b=2000 \text{ s/mm}^2$  DWI:  $b=3000 \text{ s/mm}^2$  DWI:  $b=4000 \text{ s/mm}^2$ 







Dr C. Vandendries

# **2.2 Applications Cliniques**

#### Ischémie Artérielle



### Ischémie Artérielle - Stade Aigu



#### Ischémie Artérielle - Stade Sub-aigu



### **IRM de DIFFUSION** Variations temporelles de l'ADC



Schwamm LH, et al. Stroke 1998 ; 29 :2268-2276



### Ischémie Artérielle

### Hémiplégie gauche brutale. IRM à 5.5 heures









### Ischémie Artérielle



#### Ischémie Veineuse



### Ischémie Veineuse





## IRM de DIFFUSION Ischémie Veineuse











## IRM de DIFFUSION Leuco-encéphalopathie PBR











### Abcès à Pyogènes



## IRM de DIFFUSION Abcès à Pyogènes













### **Tumeurs Cellulaires**



### IRM de DIFFUSION Lymphome



FLAIR T1 Gade DWI ADC

Pr C. Oppenheim, CHSA

### Encéphalites


## **IRM de DIFFUSION**

### Encéphalite à Virus du Nil





## **IRM de DIFFUSION**

### Sclérose en Plaques





**DWI** 

**ADC** 

### IRM de DIFFUSION Creutzfeld-Jacob









Pr C. Oppenheim, CHSA

# 2.3.1 Principes

## IRM de Tenseur de Diffusion Méthodologie et Mise en Oeuvre

Description complète des propriétes de diffusion d'un voxel
Tenseur de diffusion (gradients dans ≥ 6 dir. de l'espace)



### Méthodologie et Mise en Oeuvre

•DTI mesure l'ADC dans 6 directions de l'espace;
•le modèle: tenseur de diffusion D = matrice symétrique 3x3;
•le tenseur est calculé pour chaque voxel



### Méthodologie et Mise en Oeuvre



- Tenseurs utilisés pour décrire la diffusion peuvent être conceptualisés et visualisés comme des ellipsoïdes
- Si les trois valeurs propres sont égales, la diffusion est isotrope et le tenseur de diffusion peut être visualisé comme une sphère

#### Méthodologie et Mise en Oeuvre

Paramètres de la diffusion anisotrope :

$$FA = \sqrt{\frac{3}{2}} \cdot \frac{\sqrt{(\lambda_1 - \lambda)^2 + (\lambda_2 - \lambda)^2 + (\lambda_3 - \lambda)^2}}{\sqrt{\lambda_1^2 + \lambda_2^2 + \lambda_3^2}}$$

$$RA = \frac{1}{\sqrt{3}} \frac{\sqrt{(\lambda_1 - \lambda)^2 + (\lambda_2 - \lambda)^2 + (\lambda_3 - \lambda)^2}}{(\lambda_1 + \lambda_2 + \lambda_3)} \quad AI = \frac{ADC_{max} - ADC_{min}}{ADC_{mean}}$$

$$VR = \frac{V_{ellipsoide}}{V_{sphere}} = \frac{\lambda_1 \lambda_2 \lambda_3}{(\lambda)^3} = \frac{\lambda_1 \lambda_2 \lambda_3}{\left(\frac{\lambda_1 + \lambda_2 + \lambda_3}{3}\right)^3} = 27 \frac{Det(D)}{Trace(D)^3}$$

### **IRM de Tenseur de Diffusion** Méthodologie et Mise en Oeuvre $\mathbf{SA} = \mathbf{e}^{-} \Sigma^{b_{ij} D_{ij}}$ $c_s = 0, c_a$ linear planar spherical tensor map $c_l = rac{\lambda_1 - \lambda_2}{\lambda_1 + \lambda_2 + \lambda_3}$ $c_p = rac{2(\lambda_2 - \lambda_3)}{\lambda_1 + \lambda_2 + \lambda_2}$ $c_s = rac{3\lambda_3}{\lambda_1+\lambda_2+\lambda_3}$

### Méthodologie et Mise en Oeuvre



Vector representation for 30 directions



Choix du nombre de directions :

•Compromis entre qualité (SNR) et durée de l'acquisition

•Utilisation du modèle mono-compartimental (1 valeur de *b*) et du tenseur de diffusion (pas de DSI : nb directions < 30)

•Corrections des macro-mouvements liée au nb de directions

#### Tractographie - Modèle FACT



A partir du point S(0), on a l'équation en 3D suivante :

 $\delta S(t)/\delta t = R(t)$ 

Avec : •S(t) : position de la fibre curviligne au temps t

• R(t) : tangente à la direction du faisceau

<sup>(1)</sup>: Basser et al, MRM 2000

#### Tractographie







### **Tractographie - Modèle Advection - Diffusion**

- Mélange d'un terme de diffusion et d'advection.
- Diffusion : suit la direction principale du tenseur v<sub>1</sub>.
- Advection : combinaison linéaire entre la direction précédente v<sub>in</sub> et v<sub>out</sub> = Dv<sub>in</sub>:

$$v_{out} = c_1 v_1 + (1 - c_1)((1 - \omega)v_{in} + \omega v_{out})$$
  
diffusion advection

 Amélioration: interpolation tri-linéaire du champ de tenseurs avec les métriques Log-Euclidiennes <sup>(2)</sup>.

> (1) : Weinstein et al., IEEE Viz'99 (2) : Fillard et Al, IEEE 2007

#### Tractographie - Comparaison FACT / AD



Streamline vs Advection - Diffusion

### IRM de Tenseur de Diffusion Tractographie - Comparaison FACT / AD



# 2.3.2 Anatomie Cérébrale Normale






































## 2.3.3 Applications Cliniques Cérébrales

### Lésions de Cisaillement axonal













# Myélinolyse Centro-pontique







## Tumeurs de l'Angle Ponto-Cérébelleux





### Névrites Optiques Rétro-Bulbaires



## **Tumeurs Cérébrales et Syndromes Inflammatories**

### Dissémination des tumeurs gliales













#### Types cellulaires : bas intermediaire haut grade





### Types cellulaires : bas intermediaire haut grade Eau



### Oligodendrogliome frontal droit opéré récidivant



Tractographie compartimentale : Cellulaire, Substance Blanche et LCS



Syndromes Schizoïdes





## 2.3.4 Anatomie Médullaire Normale



1-Faisceau cortico-spinal ventral 2-Champ de faisceaux extrapyramidaux 3-Faisceautecto-spinal 4-Faisceau cortico-spinal dorsa 5-Faisceaurubro-spinal 6-Faisceau réticulo spinal latéral 7-Faisceau spino-cérébelleux ventral 8-Faisceau spino-cérébelleux dorsal 9-Faisceau spino-thalamique ventral 10-Faisceau spino-thalamique dorsal 11-Faisceau gracile 12-Faisceau cunéiforme 13-Faisceaux propres A- Apex B-Base I- Isthme LT-Lame Terminale

### **Tractographie Médullaire** Vérifications Expérimentales


















### **IRM de Tenseur de Diffusion**

#### Tractographie médullaire - Sujet Sain

| Faisceaux | ADC moyen | FA moyen        | Nb « fibres »  |
|-----------|-----------|-----------------|----------------|
| CSLD      | 1.05      | $0,71 \pm 0.02$ | 22 (soit ~3 M) |
| CPD       | 0.96      | $0,79 \pm 0.02$ | 65 (soit ~9 M) |
| CPG       | 0.96      | $0,80 \pm 0.02$ | 63 (soit ~9 M) |
| CSLG      | 1.03      | $0,73 \pm 0.02$ | 19 (soit ~3 M) |

NB : Résultats obtenus en région cervicale moyenne (C4) avec un voxel de 6 mm<sup>3</sup>. Dix fibres sont arbitrairement affichées dans un voxel, avec une moyenne histologique connue de 20000 fibres / mm<sup>3</sup>, soit environ 12000 fibres réelles par « fibre » représentée.

### **2.3.5 Applications Cliniques**

# **Compressions** Médullaires





### **Tumeurs Médullaires**















#### Hémangioblastome



## Processus Inflammatoires Médullaires et Régénération Axonale









## Processus Vasculaires Malformatifs



## **Sections Médullaires**



# **Syringomyélie**



Ducreux et al, NCNA 2007



#### Hatem et al, Brain 2010

# **Radiculopathies**





## Hernies Discales





# **3.1 Rappels Physiologiques**

#### **Circulation Artérielle**



#### **Circulation Artérielle**



#### **Circulation Veineuse**



Veine Jugulaire Interne

#### **Micro-circulation et BHE**






## **Rappels Physiologiques**

Perfusion Cérébrale : Capacité d'autorégulation.

Décrite par le Volume Sanguin Cérébral (CBV), le Débit Sanguin Cérébral (CBF) et le Temps de Transit Moyen (MTT)

Valeurs normales :

|     | Substance      | Substance      |  |  |
|-----|----------------|----------------|--|--|
|     | Grise          | Blanche        |  |  |
| CBV | 4 ml/100g      | 2 ml/100g      |  |  |
| CBF | 60 ml/min/100g | 20 ml/min/100g |  |  |
| MTT | 4 s            | 6 s            |  |  |

## **Rappels Physiologiques**

Perfusion Cérébrale pathologiques (perte autorégulation) :

-Ischémie : CBV Jet CBF J

-Olighémie : CBV = et/ou tet CBF

-Hyperperfusion : CBV tet CBF

| SG  | Ischémie        | Olighémie        | Hyperperfusion        |
|-----|-----------------|------------------|-----------------------|
| CBV | <2 ml/100g      | ≥ 4 ml/100g      | > 4 ml/100g           |
| CBF | <20 ml/min/100g | ≤ 60 mI/min/100g | >80 ml/min/100g       |
| MTT | >7 s            | <b>4-6</b> s     | <2 s                  |
|     |                 |                  | Baron 1981, 1985, 199 |

#### **Rappels Physiologiques**



Shunts Artérioveineux « simples » = MAV ou FAV



FLAR SE T2 EG T1

**MPVR GADO** 

•Communication directe artère-veine (=nidus, fistule)

- •Manifestations cliniques :
- -Rupture (50%)
- -Epilepsie (35%)
- -Céphalées (10%)
- -Déficit (5%)
- Anomalies de Perfusion à l'artériographie :
  Hypervascularisation
  Stase veineuse (+++)
- »Vol « artériel

ARTERIO

- •BHE intacte si pas rupture
- •Manifestations à distance du nidus possibles

# 3.2 Rappels Méthodologiques IRM de Perfusion en Bolus

## Mesure de la Perfusion cérébrale en IRM

#### Injection en bolus de contraste (Gadolinium)

- Marquage intrinsèque du flux :
  - Mouvement intra-voxel cohérent (Le Bihan, 1986): densité de capillaires fonctionnels
  - Déoxyhémoglobine (BOLD)
  - Arterial Spin Labeling
- Marquage continu (CASL)
- Marquage pulsé (EPISTAR : double FLAIR)
- Traceurs Exogènes :
  - > Fluor
  - Deutérium
  - Oxygène
  - Xenon

#### Mesure de la Perfusion cérébrale en IRM T2\*

GADOLINIUM bolus IV substance paramagnétique non diffusible circule dans le secteur intravasculaire si intégrité de BHE augmente la différence de susceptibilité magnétique entre le lit capillaire et le parenchyme adjacent Gradients de champ magnétiques internes 🗖 déphasage des spins ڬ signal lors du passage du Gadolinium

## Mesure de la Perfusion cérébrale en IRM T2\*

Méthode au Premier Passage (= Stewart-Hamilton)

- > Traceur non-diffusible (pas de rupture de la BHE)
- > Traceur et sang parfaitement mélangés
- > Quantité de traceur faible (pas de perturbation du système)
- > Traceur circule à la vitesse du sang
- > Pas d'accumulation ou de stagnation de traceur
- Processus linéaire et stationnaire
- Recirculation du traceur doit pouvoir être négligée



#### Mesure de la Perfusion cérébrale en IRM T2\*

Séquence de Perfusion EPI (Echo Planar Imaging)



IRM 1.5 Tesla
Echo de gradient T2 (> SE T2)
TR 2000 ms, TE 30ms

•Importants artéfacts de susceptibilité magnétique

•Utilisable en SE ou GE pour mesure de perfusion

•SE : microcirculation mais faible SNR

•GE : fort SNR mais Artériel + capillaire + veines

#### Mesure de la Perfusion cérébrale en IRM T2\*

Séquence de Perfusion PRESTO (Principle of Echo Shifting with a Train of Observations)



Aquisition 3D
Réduction artéfacts de susceptibilité

Bonne résolution temporelleRésolution spatiale médiocre

•Segmentation EPI avec train d'écho plus court que valeur T2\*

•TE plus long que TR

•Mesures de perfusion similaires à EPI



## Mesure de la Perfusion cérébrale en IRM T2\*

Mesure de la Perfusion cérébrale en IRM par Injection en Bolus

Injection de Bolus de Chélate de Gd



Perfusion avec KT 18 G pli du coude G
Injection 15 cc Gado en bolus, suivi de 15 cc de sérum physiologique
Délai injection : 3 s après le début de l'acquisition
Débit injection : 7 cc/s
Durée injection : de 2 s

#### Mesure de la Perfusion cérébrale en IRM T2\*

*Etude de la cinétique du 1<sup>ier</sup> passage de contraste dans le lit capillaire cérébral.* 





#### Mesure de la Perfusion cérébrale en IRM T2\*

Méthodes de mesures de la Perfusion



#### Mesure de la Perfusion cérébrale en IRM T2\*

Méthodes de mesures de la Perfusion



#### Mesure de la Perfusion cérébrale en IRM T2\*



### Mesure de la Perfusion cérébrale en IRM T2\*

Description de la Courbe Tissulaire

- embol de produit de contraste non idéal
- Quantification nécessite la détermination de la fonction d'entrée artérielle (déconvolution)

$$c_{ROI}(t) = F_{ROI}c_a(t) \otimes R(t)$$

- détermination de R(t) :
- méthodes de déconvolution :
  - Transformée de Fourier (TF)
  - Décomposition en Valeurs Singulières (SVD)
  - Minimisation et Régularisation

extraction de paramètres de flux (CBF), de volume (CBV) et de temps de transit moyen (MTT)

#### Mesure de la Perfusion cérébrale en IRM T2\*

Fonction d'Entrée Artérielle (AIF)



#### Mesure de la Perfusion cérébrale en IRM T2\*

Fonction d'Entrée Artérielle (AIF)



#### Mesure de la Perfusion cérébrale en IRM T2\*

Elimination de la Recirculation par Ajustement Gamma

SA





#### Mesure de la Perfusion cérébrale en IRM T2\*

Elimination de la Recirculation par Ajustement Gamma



#### Mesure de la Perfusion cérébrale en IRM T2\*

Volume Sanguin Cérébral (CBV)



Le CBV reflète la masse sanguine locale (en ml/100g).
 Selon la théorie de la dilution des indicateurs, le calcul du Volume Sanguin Cérébral absolu est :

$$\mathbf{CBV_i} = \frac{\kappa}{\rho} \cdot \frac{\int \mathbf{C_i^{fit}} \mathbf{m}(t) dt}{\int \mathbf{AIF^{fit}}(t) dt}$$

Avec

κ

ρ

- $C_{i\ m}^{fit}(t)$  : Concentration de Gadolinium
- AIF<sup>fit</sup>(t) : Fonction d'Entrée Artérielle
  - : Facteur de correction de l'hématocrite des vaisseaux
  - : Densité du tissu cérébral

### Mesure de la Perfusion cérébrale en IRM T2\*

Débit Sanguin Cérébral (CBF)



- Le CBF reflète la perfusion microcapillaire locale (en ml/min/100g).
- Le calcul du CBF n'est possible qu'après déconvolution (TF) de l'AIF (bolus instantané).

$$CBF_{i} = \frac{CBV_{i} C_{max}}{\int C_{i}(t)dt} C_{i}(t) = F^{-1} \left\{ \frac{F\left\{C_{i}^{fit}m(t_{i})\right\}}{F\left\{AIF^{fit}(t)\right\}} \right\}$$

Avec

- $\begin{array}{c} C_{i m}^{fit}(t) \\ C_{i}(t) \end{array}$
- C<sub>max</sub>
- AIF<sup>fit</sup>(t) F<sup>-1</sup>
- : Concentration tissulaire mesurée
- : Concentration tissulaire idéale
- : Concentration maximale
- (t) : Fonction d'Entrée Artérielle
  - : Déconvolution par FFT inverse

#### Mesure de la Perfusion cérébrale en IRM T2\*

Temps de Transit Moyen (MTT)



- Le MTT correspond au temps moyen mis par une particule pour parcourir la distance de l'entrée artérielle à la sortie veineuse (en s).
- Reflète la distribution microcapillaire, les résistances périphériques vasculaires.



- Dépend donc de l'AIF et de la qualité de sa déconvolution.
- Phénomènes de volume partiels ou de susceptibilité magnétiques surestiment le MTT.

#### Mesure de la Perfusion cérébrale en IRM T2\*

Résultats de précédentes études

|                    | Type d'étude | Substance Grise  |                    | Substance Blanche |                    |
|--------------------|--------------|------------------|--------------------|-------------------|--------------------|
| Référence          |              | CBV (%)          | CBF<br>ml/min/100g | CBV (%)           | CBF<br>ml/min/100g |
| Smith 2000         | PWI          | 9,6 ± 1,9        | 65,5 ± 16,3        | <b>3,9 ± 1,2</b>  | 28,1 ± 6,9         |
| <b>Remp</b> 1994   | PWI          | 8,0 ± 3,1        | $69,7 \pm 29,7$    | $4,2 \pm 0,9$     | 33,6 ± 11,5        |
| Hagen 1999         | PWI          | NA               | <b>52,2 ± 16,4</b> |                   | 27,4 ± 6,8         |
| Ye 1997            | MR ASL       | NA               | 81,0 ± 20,0        |                   | 23,0 ± 7,0         |
| Yang 1998          | MR ASL       | NA               | <b>58,5 ± 7,2</b>  |                   | 20,7 ± 2,3         |
| Frackowiak<br>1980 | TEP          | NA               | 65,3 ± 11,0        |                   | 21,4 ± 9,0         |
| Greenberg 1978     | TEP          | <b>5,0 ± 0,7</b> | NA                 | 3,5 ± 0.2         | NA                 |
| Leenders 1990      | TEP          | 3,8 ± 0,5        | 42,0 ± 8,0         | $2,7 \pm 0,6$     | $22,2 \pm 4,9$     |
| Hamberg 1996       | TDM          | 4,5 ± 0,6        | NA                 | 2,5 ± 0,6         | NA                 |

# **3.3 Rappels Méthodologiques IRM de Perfusion en ASL**

### Mesure de la Perfusion cérébrale en ASL

#### Définition

région de marquage : artères (1)
région à imager : tissu (2)





- Les protons du sang sont marques à t=0 avec une impulsion RF 180°
- Relaxation avec T<sub>1a</sub>
- Relaxation avec T<sub>1t</sub> après perfusion

Acquisition de l'image à *t=TI* (EPI ou spiralée)

#### Mesure de la Perfusion cérébrale en ASL

Technique

-2 acquisitions:

-une première avec marquage ('image marquée'  $\alpha$  IM<sub>m</sub>) -une seconde sans marquage ('image de contrôle'  $\alpha$  IM<sub>c</sub>)

#### Limites :

-Faible SNR à 1.5 T : une image de perfusion =  $IM_c - Im_m$  (faible signal : 0.9% ± 0.13 pour ASL contre 1.44% ± 0.13 pour BOLD) - Nombre limité de coupes (4-8 max.)

• L'image de perfusion finale est la moyenne d'un nombre important d'image soustraites.

-Possiblité utiliser ASL pour IRMf d'activation

#### Mesure de la Perfusion cérébrale en ASL

**Quantification : Equations de Bloch** 

Traduit l'évolution de l'aimantation du tissu par rapport au temps.

$$\frac{dM_{t}(t)}{dt} = \frac{M_{t}^{0} - M_{t}(t)}{T_{1t}} + f\left(M_{a}(t) - M_{v}(t)\right)$$
$$\Delta M_{t}(TI) = 2M_{a}^{o} f \int_{0}^{TI} e^{-t/T_{1a}} \times e^{-f(TI-t)/\lambda} \times e^{-(TI-t)/T_{1t}} dt$$

3 composantes: -apport de sang artériel marqué
 -drainage par les veines
 -relaxation longitudinale

### Mesure de la Perfusion cérébrale en ASL

Séquences

EPISTAR : Echo Planar Imaging and Signal Targeting with Alternating Radio Frequency

- -> 90° dans plan image
- -> 180° dans plan artériel proximal

-> EPI

FAIR Flow-Sensitive Alternating Inversion Recovery

**IPICORE** 

#### Mesure de la Perfusion cérébrale en ASL

Pulsé vs Continu







#### Mesure de la Perfusion cérébrale en ASL

**Quantification du DSC** 

$$\Delta M_t(TI_2) = 2M_a^0 fTI_1 e^{-TI_2/TI_{1a}} q(T_{1a}, T_{1t}, T_{ex}, T_{I2})$$



q est une **petite** correction qui rend compte:

-du drainage par les veines

-de la différence entre T<sub>1a</sub> et T<sub>1t</sub>

=> q dépend de T<sub>1t</sub> et T<sub>ex</sub>

Cette correction est plus importante dans la substance blanche que dans la substance grise.

### Mesure de la Perfusion cérébrale en ASL

#### **Quantification du DSC**

#### Image de perfusion

- 4 coupes adjacentes de 7mm d'épaisseur
- région de marquage = 10cm
- espace entre marquage/image = 1 cm
- -FOV = 200 mm
- taille de la matrice = 64\*64
- taille d'un voxel =  $3 \parallel 25*3 \parallel 25*7$ mm
- $-\Pi_1/\Pi_s/\Pi_2 = 700/1050/1400 ms$
- TR=2.5s
- 150 images EPI spiralées (75 marquée et 75 contrôle) en 6min 15s

#### Image T<sub>1</sub>

24 images Inversion / Récupération à 24 TI pour la correction q

#### Mesure de la Perfusion cérébrale en ASL

**Quantification du DSC** 



#### Carte $T_1$ :

différencier la substance grise  $(T_{1t}>0.65s)$ de la substance blanche  $(T_{1t}>0.65s)$ calcul du flux corrigé (9% SB, 5% SG)

|                              | Substance<br>grise | Substance<br>blanche |
|------------------------------|--------------------|----------------------|
| T <sub>1</sub> (s)           | 0.74               | 0.58                 |
| ť conrigé<br>ml/100g/min     | 75.6               | 24.6                 |
| f non-corrigé<br>ml/100g/min | 71.7               | 22,4                 |

#### Mesure de la Perfusion cérébrale en ASL

#### Analyse du Signal



BOLD

ASL

#### Mesure de la Perfusion cérébrale en ASL


#### Mesure de la Perfusion cérébrale en ASL

**QAvantage : pas d'injection de contraste** 

**Qnconvénients :** •Très faible SNR : 3 T •Marquage avec pulse stable •Approximation de l'échange interstitiel •Mesure uniquement CBF

## **3.4 Applications Cliniques**

### IRM de Perfusion Ischémie cérébrale au Stade Aigu







#### **Mismatch en IRM**



**T2** ADC DWI MTT CBV

#### Mismatch en IRM



DWI

MTT

**CBF** 













TMAX







#### **Malformations Artério-Veineuses Cérébrales**



#### **Malformations Artério-Veineuses Cérébrales**





Recherche zone corticale d'hypo ou d'hyperperfusion inter-ictale



#### **Tumeurs - Néovascularisation et Rupture de BHE**



#### **Tumeurs - Néovascularisation et Rupture de BHE**



#### Tumeurs - Néovascularisation et Rupture de BHE



## 4. IRM de Perméabilité

## 4.1 Principes



Etude de la diffusion d'un traceur dans l'interstitium



### **IRM de Perméabilité**



### IRM de Perméabilité

#### Méthode de correction de la fuite de contraste





#### Law et al, AJNR 2004;25:746-755

### **IRM de Perméabilité**

#### Perfusion et Perméabilité simultanées en T2\*



# IRM de Perméabilité

#### **Calculs Paramétriques**

$$\begin{split} & CBV_{i} = \frac{\kappa}{\rho} - \frac{\int Ccorr_{i}m(t)dt}{\int AIF(t)dt} \\ & CBF_{i} = \frac{CBV_{i}C_{imax}}{\int C_{i}(t)dt} \text{ avec } C_{i}(t) = FFT^{1} \left\{ \frac{FFT\left\{ Ccorr_{i}m(t) \right\}}{FFT\left\{ AIF(t) \right\}} \right\} \\ & MTT_{i} = \frac{CBV_{i}}{CBF_{i}} \\ & fBV_{i} = \int_{0}^{t} \frac{A_{1}(1-e^{-b1t}) + A_{2}e^{-b2t}}{A_{1v}(1-e^{-b1vt}) + A_{2v}e^{-b2vt}} \\ & kPS_{i} = Surf_{i} \ fBV_{i} \frac{\kappa}{\rho} - \frac{A_{1}b_{1}+A_{2}b_{2}-b_{1}b_{2}}{b_{1}(1-A_{1})+b_{2}(1-A_{2})} \end{split}$$

## 4.2 Enjeux

Enjeu nº1 : Détecter la néo-angiogénèse

















Métastase











### Enjeu n°2 : Différencier Récidive et Radionécrose






## Enjeu n°3 : Evaluer l'efficacité thérapeutique

#### **Traitements Anti-angiogéniques**















# 5. Spectro IRM



#### Lactates





ppm

#### Gliome de Haut Grade



ppm





Dr D. Galanaud, PSL

2,25

NAA

2,25

2,25

3,38

3,38

3,38

4,5

4,5





#### Adénocarcinomes



#### **Adénopathies**



# 6. IRM d'Activation

# 6.1 Rappels Physiologiques

### **IRM d'Activation** Neuro-Anatomie Fonctionnelle







#### Aires de Brodmann :

Area 17 – Scissure Calcarine, Aire visuelle Primaire Areas 18,19 – Aires Visuelles Associatives Areas 4,6 – Aires Motrices Primaires et Supplémentaires Areas 44,45 – Aires de Broca Areas 41,42,22 – Aires Auditives Primaires et Associatives

## **IRM d'Activation**

#### **Neuro-Anatomie Fonctionnelle**





#### **Aires Primaires Langage**



Breca



Wernicke



#### **Voies Auditives**













Primary Auditory Cortex – BA 41

Secondary Auditory Cortex - BA 42, 43

#### **Réseaux Neuronaux**





## 6.2 Rappels Méthodologiques

## **IRM d'Activation**

#### **Couplage Activation - Perfusion**





## **IRM d'Activation**

#### **Traitement des Images**



# 6.3 Applications Cliniques

### IRM d'Activation Motricité


## **IRM d'Activation** Metricité - Bilan Tumeral



## IRM d'Activation Motricité - Bilan Tumoral



# IRM d'Activation Langage - Fluence Verbale



# IRM d'Activation Langage - Latéralisation



# IRM d'Activation Langage - Bilan Tumoral



## IRM d'Activation Fonctions Visuelles



# **IRM d'Activation**

#### **Fonctions Auditives**



# **IRM d'Activation**

#### **Fonctions Auditives**







# **IRM d'Activation**

#### **Imagerie Mentale Motrice**



## IRM d'Activation Imagerie Mentale Auditive



## **IRM d'Activation** Evaluations Thérapeutiques



# 7. Bilan Fonctionnel



# 7.1 Status Epilepticus









































FLAIR





































































ADC











































T1 Gado













# **7.2 Syncinésies sur** Kallmann de Morsier







CST + Th











# 7.3 Syringomyélie et Récupération Sensorielle




### 7.4 Régénération Axonale et Greffe de Moelle







## 7.5 Bilan Pré-Radiothérapie















## 7.6 IRM Fonctionnelle Olfactive



Shepherd, Nature 2006





# 8. Conclusions





#### Laboratoire d'Imagerie Médicale Expérimentale et Clinique



#### http://www.fmritools.org